# Exascale Challenges for the Applied Mathematics and Computer Science Community

Horst Simon
Lawrence Berkeley National Laboratory
and UC Berkeley

11<sup>th</sup> DOE ACTS Workshop Berkeley, Calif. August 19, 2010





### **Key Message**

- The transition from petascale to exascale will be characterized by significant and dramatics changes in hardware and architecture.
- This transition will be disruptive, but create unprecedented opportunities for computational science.











#### **Overview**

- From 1999 to 2009: evolution from Teraflops to Petaflops computing
- From 2010 to 2020: key technology changes towards Exaflops computing
- Impact on Applied Mathematics











### Jaguar: World's most powerful computer in 2009





#1 Nov. 2009

| Peak performance | 2.332 PF |
|------------------|----------|
| System memory    | 300 TB   |
| Disk space       | 10 PB    |
| Processors       | 224K     |
| Power            | 6.95 MW  |











## ASCI Red: World's Most Powerful Computer in 1999





#1 Nov. 1999

| Peak performance | 3.154 TF |
|------------------|----------|
| System memory    | 1.212 TB |
| Disk space       | 12.5 TB  |
| Processors       | 9298     |
| Power            | 850 kW   |











## Comparison Jaguar (2009) vs. ASCI Red (1999)

- 739x performance (LINPACK)
  - K

- 267x memory
- 800x disk
- 24x processors/cores

Parallelism and faster processors made about equal contributions to performance increase



Significant increase in operations cost

Essentially the same architecture and software environment



#### **Overview**

- From 1999 to 2009: evolution from Teraflops to Petaflops computing
- From 2010 to 2020: key technology changes towards Exaflops computing
- Impact on Applied Mathematics











## Traditional Sources of Performance Improvement are Flat-Lining (2004)

#### New Constraints

15 years of exponential clock rate growth has ended



- How do we use all of those transistors to keep performance increasing at historical rates?
- Industry Response:
   #cores per chip doubles
   every 18 months instead
   of clock frequency!

Figure courtesy of Kunle Olukotun, Lance Hammond, Herb Sutter, and Burton Smith













### Projected Performance Development





### Concurrency Levels





### Moore's Law reinterpreted

- Number of cores per chip will double every two years
- Clock speed will not increase (possibly decrease)
- Need to deal with systems with millions of concurrent threads
- Need to deal with inter-chip parallelism as well as intra-chip parallelism













### Multicore comes in a wide variety

- Multiple parallel general-purpose processors (GPPs)
- Multiple application-specific processors (ASPs)



Intel Network Processor 1 GPP Core 16 ASPs (128 threads)



Sun Niagara 8 GPP cores (32 threads)



Intel 4004 (1971):
4-bit processor,
2312 transistors,
~100 KIPS,
10 micron PMOS,
11 mm<sup>2</sup> chip

IBM Cell 1 GPP (2 threads) 8 ASPs



Picochip DSP 1 GPP core 248 ASPs

Cisco CRS-1 188 Tensilica GPPs



"The Processor is the new Transistor" [Rowen]

#### What's Next?













### Roadrunner - A Likely Future Scenario



after Don Grice, IBM, Roadrunner Presentation, ISC 2008











### Why MPI will persist

- Obviously MPI will not disappear in five years
- By 2014 there will be 20 years of legacy software in MPI
- New systems are not sufficiently different to lead to new programming model









#### What will be the "X" in MPI+X

- Likely candidates are
  - PGAS languages
  - OpenMP
  - Autotuning
  - CUDA, OpenCL
  - A wildcard from commercial space











### What's Wrong with MPI Everywhere?











### What's Wrong with MPI Everywhere?

- One MPI process per core is wasteful of intra-chip latency and bandwidth
- Weak scaling: success model for the "cluster era"
  - -not enough memory per core
- Heterogeneity: MPI per CUDA threadblock?









## We won't reach Exaflops with the current approach















## ... and the power costs will still be staggering



From Peter Kogge, DARPA Exascale Study











### **Memory Power Consumption**

 Power Consumption with standard Technology Roadmap  Power Consumption with Investment in Advanced Memory Technology



70 Megawatts total













## Memory Technology Bandwidth costs power















## A decadal DOE plan for providing exascale applications and technologies for DOE mission needs

#### Rick Stevens and Andy White, co-chairs

Pete Beckman, Ray Bair-ANL; Jim Hack, Jeff Nichols, Al Geist-ORNL; Horst Simon, Kathy Yelick, John Shalf-LBNL; Steve Ashby, Moe Khaleel-PNNL; Michel McCoy, Mark Seager, Brent Gorda-LLNL; John Morrison, Cheryl Wampler-LANL; James Peery, Sudip Dosanjh, Jim Ang-SNL; Jim Davenport, Tom Schlagel, BNL; Fred Johnson, Paul Messina, ex officio



## Process for identifying exascale applications and technology for DOE missions ensures broad community input

- Town Hall Meetings April-June 2007
- Scientific Grand Challenges
   Workshops Nov, 2008 Oct, 2009
  - Climate Science (11/08),
  - High Energy Physics (12/08),
  - Nuclear Physics (1/09),
  - Fusion Energy (3/09),
  - Nuclear Energy (5/09),
  - Biology (8/09),
  - Material Science and Chemistry (8/09),
  - National Security (10/09)
  - Cross-cutting technologies (2/10)
- Exascale Steering Committee
  - "Denver" vendor NDA visits 8/2009
  - SC09 vendor feedback meetings
  - Extreme Architecture and Technology Workshop 12/2009
- International Exascale Software Project
  - Santa Fe, NM 4/2009; Paris, France 6/2009; Tsukuba, Japan 10/2009











**FUNDAMENTAL SCIENCE** 



### DOE mission imperatives require simulation and analysis for policy and decision making

- Climate Change: Understanding, mitigating and adapting to the effects of global warming
  - Sea level rise
  - Severe weather
  - Regional climate change
  - Geologic carbon sequestration
- Energy: Reducing U.S. reliance on foreign energy sources and reducing the carbon footprint of energy production
  - Reducing time and cost of reactor design and deployment
  - Improving the efficiency of combustion energy systems
- National Nuclear Security: Maintaining a safe, secure and reliable nuclear stockpile
  - Stockpile certification
  - Predictive scientific challenges
  - Real-time evaluation of urban nuclear detonation







Accomplishing these missions requires exascale resources.



### Exascale simulation will enable fundamental advances in basic science.

#### High Energy & Nuclear Physics

- Dark-energy and dark matter
- Fundamentals of fission fusion reactions
- Facility and experimental design
  - Effective design of accelerators
  - Probes of dark energy and dark matter
  - ITER shot planning and device control
- Materials / Chemistry
  - Predictive multi-scale materials modeling: observation to control
  - Effective, commercial technologies in renewable energy, catalysts, batteries and combustion
- Life Sciences
  - Better biofuels
  - Sequence to structure to function

These breakthrough scientific discoveries and facilities require exascale applications and resources.







nucleons



#### **Potential System Architecture Targets**

| System attributes             | 2010     | "2015"           |          | "2018"        |           |
|-------------------------------|----------|------------------|----------|---------------|-----------|
| System peak                   | 2 Peta   | 200 Petaflop/sec |          | 1 Exaflop/sec |           |
| Power                         | 6 MW     | 15 MW            |          | 20 MW         |           |
| System memory                 | 0.3 PB   | 5 PB             |          | 32-64 PB      |           |
| Node performance              | 125 GF   | 0.5 TF           | 7 TF     | 1 TF          | 10 TF     |
| Node memory BW                | 25 GB/s  | 0.1 TB/sec       | 1 TB/sec | 0.4 TB/sec    | 4 TB/sec  |
| Node concurrency              | 12       | O(100)           | O(1,000) | O(1,000)      | O(10,000) |
| System size (nodes)           | 18,700   | 50,000           | 5,000    | 1,000,000     | 100,000   |
| Total Node<br>Interconnect BW | 1.5 GB/s | 20 GB/sec        |          | 200 GB/sec    |           |
| MTTI                          | days     | O(1day)          |          | O(1 day)      |           |

## Comparison "2018" vs. Jaguar (2009)

500x performance (peak)

100x memory

5000x concurrency

• 3x power

All performance increase is based on more parallelism



Significantly different architecture and software environment













### What are critical exascale technology investments?

- System power is a first class constraint on exascale system performance and effectiveness.
- Memory is an important component of meeting exascale power and applications goals.
- **Programming model**. Early investment in several efforts to decide in 2013 on exascale programming model, allowing exemplar applications effective access to 2015 system for both mission and science.
- Investment in exascale processor design to achieve an exascale-like system in 2015.
- Operating System strategy for exascale is critical for node performance at scale and for efficient support of new programming models and run time systems.
- Reliability and resiliency are critical at this scale and require applications neutral
  movement of the file system (for check pointing, in particular) closer to the running
  apps.
- HPC co-design strategy and implementation requires a set of a hierarchical performance models and simulators as well as commitment from apps, software and architecture communities.

#### **Overview**

- From 1999 to 2009: evolution from Teraflops to Petaflops computing
- From 2010 to 2020: key technology changes towards Exaflops computing
- Impact on Applied Mathematics
  - Co-design











### The trade space for exascale is very complex.





### Co-design expands the feasible solution space to allow better solutions.

#### **Application driven:**

Find the best technology to run this code.

Sub-optimal

### **Application**

- **↑** Model
- **†** Algorithms
- **†** Code

### **Technology**

Now, we must expand the co-design space to find better solutions:

- •new applications & algorithms,
- •better technology and performance.

#### **•** architecture

- **programming model**
- **e** resilience
- **power**

Technology driven: Fit your application to this technology. Sub-optimal.



#### Hierarchical {application, s/w, h/w} cosimulation a the key for co-design

- Hierarchical co-simulation capability
  - Discussions between architecture, software and application groups
  - System level simulation based on analytic models
  - Detailed (e.g. cycle accurate) cosimulation of hardware and applications
- Opportunity to influence future architectures
  - Cores/node, threads/core, ALUs/ thread
  - · Logic layer in stacked memory
  - Interconnect performance
  - Memory/core
  - Processor functionality
- Current community efforts must work together to provide a complete co-design capability







### A first step toward co-design was last week's exascale workshop.

 The approach will be to engage experts in computational science, applied mathematics and CS with the goal of

Cross-cutting Technologies for Computing at the Exascale



February 2-5, 2010 · Washington, D.C.

- Producing a first cut at the characteristics of systems that (a) could be fielded by 2018 and (b) would meet applications' needs
- Outlining the R&D needed for "co-design" of system architecture, system software and tools, programming frameworks, mathematical models and algorithms, and scientific application codes at the exascale, and
- Exploring whether this anticipated phase change in technology (like parallel computing in 1990s) provides any opportunities for applications. That is, whether a requirement for revolutionary application design allows new methods, algorithms, and mathematical models to be brought to bear on mission and science questions.

## **Summary of some priority** research directions (PRD)

Black – Crosscutting workshop report

**Green – HDS interpretation** 

- Investigate and develop new exascale programming paradigms to support 'billion-way' concurrency
  - Think 10,000 times more parallel
  - Expect MPI+X programming model
  - Think of algorithms that can easily exploit the intra node parallelism, especially if CS researchers develop automatics tools for X











## Summary of some priority research directions (PRD) -- cont.

- Re-cast critical applied mathematics algorithms to reflect impact of anticipated macro architecture evolution, such as memory and communication constraints
  - Live with less memory/thread and less bandwidth
- Develop new mathematical models and formulations that effectively exploit anticipated exascale hardware architectures
  - Add more physics and not just more refinement
- Address numerical analysis questions associated with moving away from bulk-synchronous programs to multitask approaches
  - No more SPMD; think of mapping coarse grain data flow in frameworks











## Summary of some priority research directions (PRD) – cont.

- Adapt data analysis algorithms to exascale environments
- Extract essential elements of critical science applications as "mini-applications" that hardware and system software designers can use to understand computational requirements
- Develop tools to simulate emerging architectures for use in co-design
  - Applied mathematicians should be ready to lead co-design teams









### Summary

- Major Challenges are ahead for extreme computing
  - Power
  - Parallelism
  - and many others not discussed here
- We will need completely new approaches and technologies to reach the Exascale level
- This opens up many new opportunities for applied mathematicians









### Shackleton's Quote on Exascale







Ernest Shackleton's 1907 ad in London's Times, recruiting a crew to sail with him on his exploration of the South Pole

"Wanted. Men/women for hazardous architectures. Low wages. Bitter cold. Long hours of software development. Safe return doubtful. Honor and recognition in the event of success."









